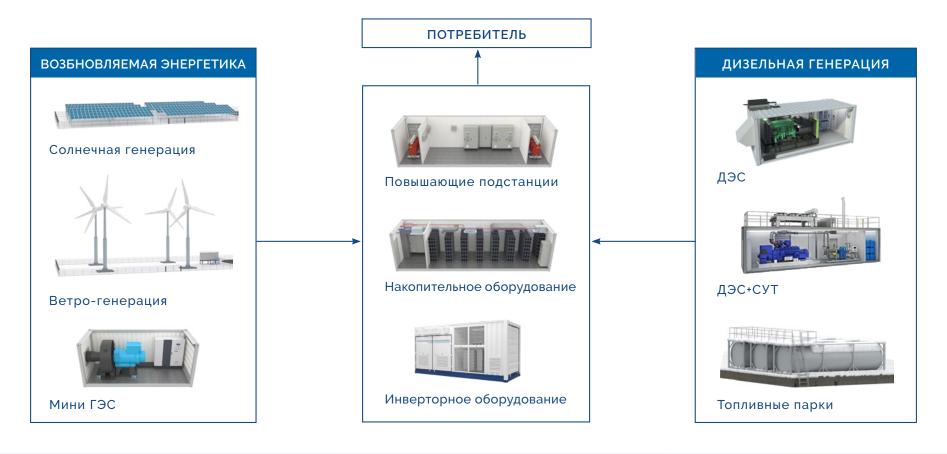


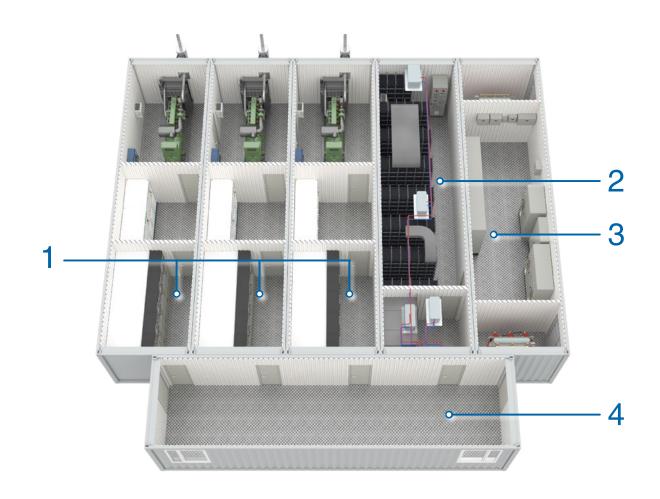
АВТОМАТИЗИРОВАННЫЙ ГИБРИДНЫЙ КОМПЛЕКС ЭЛЕКТРОГЕНЕРАЦИИ

АВТОМАТИЗИРОВАННЫЙ ГИБРИДНЫЙ КОМПЛЕКС ЭЛЕКТРОГЕНЕРАЦИИ


Автоматизированный гибридный энергокомплекс (АГЭК) представляет собой автономный модульный объект энергосервиса, обеспечивающий энергоснабжение посредством дизельной электростанции (ДЭС), а также станции возобновляемой энергии на базе солнечных батарей, системы ветро-генерации или модульной мини-ГЭС. Принцип возобновляемой электро-генерации выбирается согласно гео-климатическим характеристикам района установки АГЭК. Комплекс имеет систему накопления электроэнергии (СНЭ) и собственный топливный парк. Распределение электроэнергии осуществляется посредством модульной повышающей двухтрансформаторной подстанции 0,4/6 кВ. Все генерирующее, накопительное и распределительное оборудование находится под управлением автоматизированной системы управления технологическим процессом (АСУ ТП), которая в автоматическом режиме обеспечивает максимально возможное использование возобновляемой энергии и работу ДЭС с наименьшим удельным расходом топлива.

МАЛАЯ ГЕНЕРАЦИЯ АО «РУСАТОМ-ЭЛЕКТРОТЕХМАШ»

Компания АО «РусАтом-ЭлектроТехМаш» производит и поставляет полный комплекс модульного оборудования для автономных комплексов малой генерации. Комплексы применяются для обеспечения потребителей электроэнергией в труднодоступных районах, при реконструкции и строительстве объектов энергосервиса, для обеспечения электроснабжения в чрезвычайных ситуациях, на объектах горно-добывающей промышленности и др.

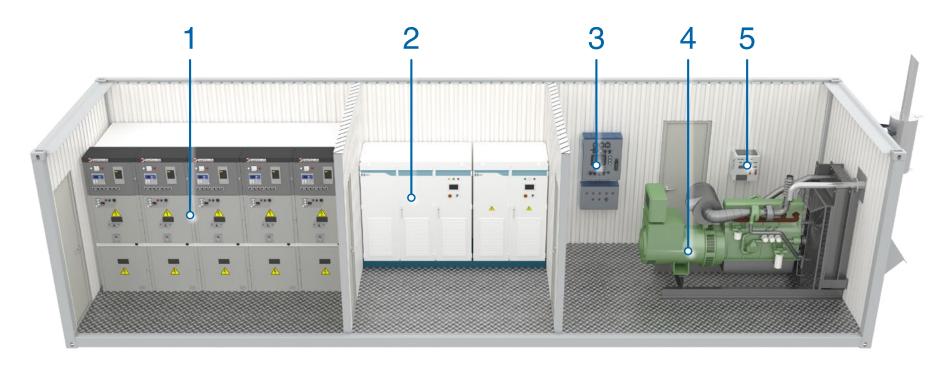


ТИПОВОЕ МОДУЛЬНОЕ ЗДАНИЕ КОМПЛЕКСА АГЭК

Энергооборудование различного функционала высокой заводской готовности поставляется в конструктиве модулей на базе стандартных контейнеров. Благодаря этому состав энергокомплекса легко трансформируется под конкретные задачи для энергообъектов различного назначения.

Подбор модульного оборудования осуществляется в зависимости от требуемой мощности и условий эксплуатации. Модули комплекса монтируются на объекте в модульное здание с единой системой собственных нужд.

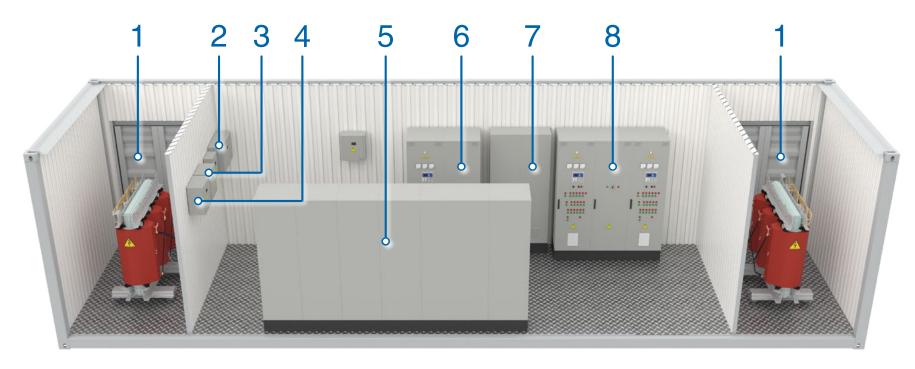
К каждому модулю дизельгенерации подсоединяется собственная топливная емкость 50 м³.



- 1 Модуль Дизельгенерации; 2 Модуль накопителя электроэнергии;
- 3 Модуль КТП двухтрансформаторной 0.4/6 кВ; 4 Тамбур.

МОДУЛЬ ДИЗЕЛЬГЕНЕРАЦИИ

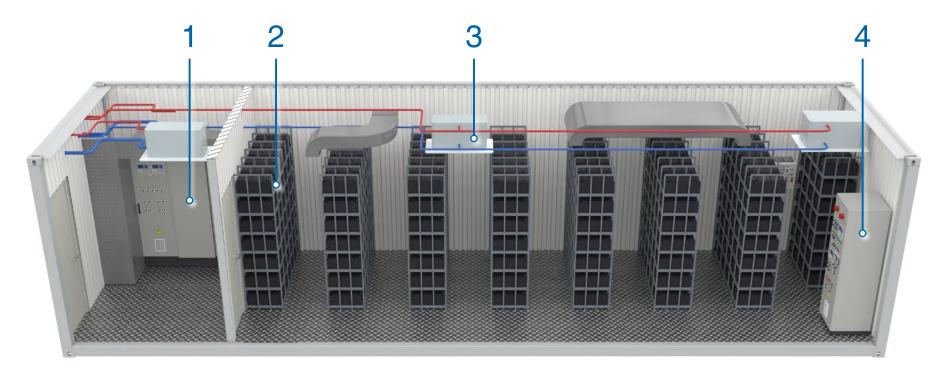
В качестве дизельных агрегатов компания использует модели ДГУ, предполагающие возможность их адаптации к работе в тяжелых климатических условиях. Используются синхронные генераторы, способные выдерживать 3-х кратные перегрузки и вырабатывающие электроэнергию высокого качества. Модуль оснащен собственной инверторной станцией с регулируемой активной мощностью. Максимальная эффективность инвертора до 98,8%.



- 1 Распределительное устройство 0,4 кВ; 2 Инверторное оборудование; 3 Шкаф системы автоматического управления ДГУ;
- 4 Щит системы учета топлива; 5 ДГУ в сборе с радиатором охлаждения на раме.

МОДУЛЬ КТП ДВУХТРАНСФОРМАТОРНОЙ 0,4/6 кВ

Повышающая двухтрансформаторная подстанция 0,4/6 кВ включает в себя вводные распределительные шкафы 0,4 кВ от РУ-0,4 кВ АГЭК, трансформаторы типа ТМГ, высоковольтные ячейки отходящих линий 6 кВ с вакуумными выключателями, ячейку измерительных трансформаторов напряжения. В модуле подстанции также размещено оборудование АСУ ТП комплекса.



- 1 Закрытые камеры трансформаторов типа ТМГ; 2 Щит собственных нужд; 3 Щит управления отоплением и вентиляцией;
- 4 Щит охранно-пожарной сигнализации; 5 Распределительное устройство собственных нужд 0,4 кВ; 6 Шкаф автоматизированной системы управления технологическим процессом; 7 Шкаф распределительный оперативного тока; 8 Шкаф системы оперативного постоянного тока.

МОДУЛЬ НАКОПИТЕЛЯ ЭЛЕКТРОЭНЕРГИИ

Система накопления энергии (СНЭ) в автоматическом режиме обеспечивает надежность и устойчивость работы компонентов АГЭК для покрытия нагрузки потребителей без перерыва в электроснабжении. Мощность и энергоемкость СНЭ определяется в соответствии с конкретным проектом. Система управления накопителями входит в состав единой АСУ ТП комплекса.

- 1 Распределительное устройство 0,4 кВ; 2 Стойки аккумуляторных батарей (АКБ);
- 3 Система кондиционирования; 4 Система управления зарядом-разрядом АКБ.

ТИПОВЫЕ РЕШЕНИЯ

ДГУ, кВт	КТП 6(10)/0,4 кВ 1x	Накопители	Ветряная и солнечная генерация, кВ/ч	Стоимость, млн. руб.
2x250	630 kBA	Выбирают из расчета потребления суточных графиков электроэнергии.	500	26
2x400	1250 кВА		800	39
2x630	1600 кВА		1260	63,7
2x800	2000 кВА		1600	81,9

ПРЕИМУЩЕСТВА МОДУЛЬНОЙ ИНФРАСТУКТУРЫ

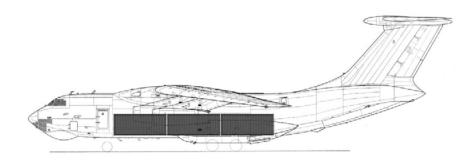
ЛЮБАЯ КОМПЛЕКТАЦИЯ В ТРАНСПОРТНОМ ГАБАРИТЕ

ВЫСОКАЯ ЗАВОДСКАЯ ГОТОВНОСТЬ МОДУЛЕЙ

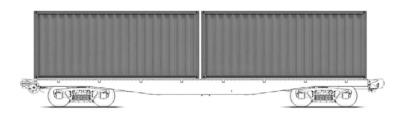
МАСШТАБИРУЕМОСТЬ ИНФРАСТРУКТУРЫ

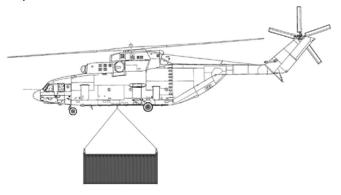
ПРОСТОТА И СКОРОСТЬ МОНТАЖА

ВЗАИМОЗАМЕНЯЕМОСТЬ ЭЛЕМЕНТОВ



ПРЕИМУЩЕСТВА МОДУЛЬНОЙ ИНФРАСТУКТУРЫ


Благодаря транспортному габариту, соответствующему российским и международным стандартам модули транспортируются стандартными средствами, что значитально облегчает логистику на всех этапах перевозки.


Автомобилями КамАЗ-43118 (6x6), КамАЗ-63560 (8x8)

Авиационным транспортом — самолетами типа Ил-76

Железнодорожным транспортом в габарите «02-ВМ»

На внешней подвеске, вертолет типа Ми-26

СПАСИБО ЗА ВНИМАНИЕ!